
 SWE577 2011S

1

Abstract—Domain Driven Design (DDD) is an approach to

developing software for complex needs by deeply connecting
the implementation to an evolving model of the core business
concepts. [11] DDD combines design and development practice
by modeling the core logic of an application. It introduces
common design principles to reflect the domain and the
domain logic of the business problem. DDD consists of a set of
patterns for building enterprise applications. In this paper you
should find information about main principles and patterns of
Domain Driven Design approach.

I.INTRODUCTION

or almost half of a century, the computer software

technology has been developing rapidly and demands of the
business world from the software technology also increases
day by day. Since the development of software business
logic solutions started, the responsibilities of software
engineers has increased excessively; therefore, this heavy
workload compelled software developers to evolve
common solutions as a result. Currently, there are various
design techniques developed for the purpose of creating
solutions to the complex projects. The Domain-Driven
Design is an approach that follows the path starting with
domain to solve the complex problems of the business
world.

“The critical complexity of the most software projects is in
understanding the business domain itself.” [4]

“The heart of software is its ability to solve domain-related
problems for its user. All other features, vital though they
may be, support this basic purpose. When the domain is
complex, this is a difficult task, calling for concentrated
effort of talented and skilled people.” [3]

In section II, the significance of understanding domain
among business software projects is explained in detail.
Furthermore the communication problems rising between
domain side and the software side implying the requirement
of a language is introduced; which is called The Ubiquitous
Language. In section III, the design blocks that will form

 This work was supported in part by the Software Engineering

Department of Bogazici University.
 Ali Fındık is with the Software Engineering Department, Bogazici

University, Istanbul (e-mail: ali.findik@boun.edu.tr).

the layered structure in Domain-Driven Design is
explained. In section IV, some methods are proposed about
refactoring. In section V, the importance of preserving the
integrity of sub-models for large-scale projects is explained
and some patterns for maintaining model integrity are
introduced.

II.BUILDING DOMAIN KNOWLEDGE

In business world, the main reason for developing a

software is to propose a solution for a specified problem.
The first step is to determine the problem and understand all
aspects related to the problem. For instance, it is unlikely to
develop an accurate flight reservation system without a
well described domain knowledge. The domain experts are
the best candidates for describing the domain with all
details. Thereby, the primary phase should be the
construction of domain knowledge, which will be fed by
domain experts.

Software analysts work on the domain information

provided by domain experts, and they transform this
knowledge into a more practical form. Domain experts
know the domain well, but their methods of organizing the
domain information may be very far from the approach of a
software developer. Likewise, both sides may also express
the information in different ways.

“The developers have their minds full of classes, methods,
algorithms, patterns and tend to always make a match
between a real life concept and a programming artifact.
They want to see object classes to create and what
relationships to model between them. They think in terms of
inheritance, polymorphism, OOP etc. But the domain
experts usually know nothing about any of that.” [2]

“To overcome this difference in communication style, when
we build the model, we must communicate to exchange the
model, about the elements involved in the model. A core
principle of domain-driven design is to use a language
based on the model. Since the model is the common ground,
the place where software meets the domain, it is
appropriate to use it as the building ground for this
language.“[2]

F

Domain-Driven Design
Ali Fındık

La
de
ab
cr

id
dr
ne
tra
fo

M
in
in
po
re
An

This commo

anguage. This
eveloper and th
bout the same
reate the base f

III. BUILD
DESIG

Building the

deal will certa
rawbacks that
ext step follow
anslate the mo

or transferring

One of the

Model”. In th
formation abo
form the soft

otential flaws
alize major po
nalysts may

on language
s language c
he domain exp
 way, and als
for the objects

DING BLOCK
GN LAYERE

domain mod
ainly decrease

may occur d
wing the const
odel into code,
the model into

so called me
his model, a
out domain fro
ftware team a

of this appro
oints of the pr
focus on pro

is called
created betwe
pert ensures th
so helps softw
s.

S OF A MODE
D ARCHITEC

del as close a
or even prev

during the wh
truction of do
, and there are
o code with al

ethods is nam
analysts liste
om domain ex
about the dom
oach is that, a
roject that may
oject generally

The Ubiquit
een the softw
hat both sides
ware modeler

EL-DRIVEN

CTURE

as possible to
vent the poten
hole process.
omain model i
e several meth
ll components

med as “Analy
en and get
xperts. Then, t
main. One of
analysts may
y cause proble
y so they mi

tous
ware
talk
 to

the
ntial
The
is to
hods
.

ysis
the

they
the
not

ems.
ight

s
p
p
d
b

d

“
s
s
m
d
a
T
c
e
L

A

d
a
c

ome miss
programmers n
parts of the
developers and
but to make bli

In this case,
design process

“Any technical
ome time touc
he plays the p

must learn to
developer mus
about the mod
Those who con
consciously en
exchange of
Language.”[2]

A. Conceptual L

As mentione

design blocks
architecture.
conceptual laye

essential po
need and, they
model. This

d as a result, d
indfolded deci
relating close
 may be propo

l person contr
ching the cod

project. Anyon
express a m

st be involved
del and have
ntribute in diffe
ngage those wh

model ide
]

Layers In Dom

ed in the intro
 may be us
Domain-Driv

ers:

 SWE57

ints about
y also may focu

leads analy
developers mig
isions.

ely the domain
osed as a bette

ributing to the
de, whatever p
e responsible f

model through
d in some le

e contact with
ferent ways mu
ho touch the c
as through

main-Driven D

oduction sectio
sed to create
ven Design

77 2011S

the model
us on insignifi

ysts to misin
ght have no ch

n modeling and
er approach.

model must sp
primary role h
for changing

h the code. E
evel of discus
h domain exp
ust
code in a dyna

the Ubiqu

Design

on, some com
build a lay
proposes

2

that
ficant
form
hoice

d the

pend
he or
code

Every
ssion
perts.

amic
itous

mmon
yered

four

 SWE577 2011S

3

1) Presentation Layer:

All the user interface operations done in this layer.
Existing information is presented to user and all the
commands coming from user are interpreted in this layer.

2) Application Layer :

Application Layer is the part that contains definitions of

all supposed functions that the software should have.
Business rules or knowledge is excluded from this layer.
Such tasks like organizing task distribution of domain
objects, controlling usage of domain objects are included
Application Layer. It manages the process of a task which is
done by either user or software. Even business rules are not
known, some services defined in Domain Layer can be used
to coordinate the tasks, thus, Application Layer can focus
on application logic instead of having anything related to
“domain/business” logic.

“The Application Layer isn’t mandatory; it is only there if it
really adds value. Since my Domain Layer is so much
richer than before, it’s often not interesting with the
Application Layer.”[9]

3) Domain Layer:

When the complexity of a system increases, the amount
of domain-related code also rises making it unreasonably
difficult to understand and impossible to develop further.
For this reason, defining a domain layer to separate domain
logic from other layers provides a much more coherent
system. It is fair to define Domain Layer as the heart of
business software. All the domain objects, business rules
and behaviors are accomplished in Domain Layer. Layers
other than Domain Layer are fed from Domain Layer’s
services so this layer must be isolated from others as much
as possible and loose coupling should be reduced to
minimum.

4) Infrastructure Layer:

This layer is the infrastructure layer – as the name itself-
which assists all other layers with a supportive library,
provides and manages communication between layers.

B. Building Blocks (Fig.1)

1) Entities

The domain objects defined in system life cycle are

called entities. The main difference between a class and an
entity is that entities have identity like information making

it represent the real world better than classes. When an
instance of an object created in an application, the identity
of the object has to be traced and preserved to express an
entity for that object. For instance this entity might be a
combination of attributes or can be an “identity_id” that
assigned to the related object.

“Having all entities inherit from entity base class type will
help eliminate some duplicate properties and behavior in
the domain entity classes. The use of this base class is
purely for convenience.“[8]

2) Value Objects

It is not necessary to have an id for all the objects of the
system. In a domain model, which object needs to have an
id and eventually become an entity should be chosen
wisely. Because some objects may hold simple values or
only used to define certain aspects of the domain. Such
objects having no real identity are called “Value Objects”.
Defining Value Object immutable, meaning the definition
of Value Objects should be done in constructor and no
modification of their value should be made during their life
time, can prevent possible consistency problems.

“One golden rule is: if Value Objects are shareable, they
should be immutable. Value Objects should be kept thin and
simple. When a value object is needed by another party, it
can be simply passed by value, or a copy of it can be
created and given.“[2]

3) Services

In the creation phase of the domain model, desired

functions of the system are defined. If an object oriented
approach is meant to be followed, the functions should be
bind to objects making it possible to do desired tasks
through related objects. Occasionally, some functions
performing vital tasks of the system might be connected
more than one object and consequently putting that task to a
different object can be absurd. For this reason, we define
such tasks that are important but cannot be a ‘thing’ in
domain as services. Services express relative concepts
completely and clarifies the definition in the domain model.

Eric Evans indicates three characteristics of a well-defined
service: [3]

 The operation relates to a domain concept that is
not a natural part of an entity or a value object

 The interface is defined in terms of other
elements in the domain model

 The operation is stateless

Services can be defined in all layers. For instance,

 SWE577 2011S

4

infrastructure services can be used to access outside sources
such as file systems, databases, SMTP etc. Domain services
are definitions of the domain models functional part and can
coordinate the sub level functions of the domain. An
another example is Application services which transmit
application processes and operations to interface level.
Services can be used in different layers for varying
purposes as long as the dependency between layers is one
sided.

4) Modules

Large scale complex software projects have a tendency to

grow bigger which also exaggerates the model and makes it
harder to understand gradually. After some points, it is
nearly impossible to evaluate the project as a whole. In such
cases, organizing concepts inside the application and
dividing them into modules will be very useful. Making
developments inside modules and discrimination between
modules will provide high cohesion and low coupling.
Using Ubiquitous Language to name modules will also
improve the intelligibility of model when viewed from
above.

5) Aggregates

Domain model contains lot of objects and there may be

associations between all objects. While one-to-many
associations relate to more than one object, many-to-many
associations increase complexity further. For this reason,
connecting an object to a group instead of connecting it to
other many objects or connecting object groups among
reduces the complexity greatly. The group of associated
objects accepted as a one in terms of data changes are called
“aggregate”. Aggregates are separated from other objects in
domain with a boundary. Every aggregate has a root that is
an entity and objects outside of boundary are allowed to
access the root only. Objects inside an aggregate can
reference among them but they have no access to the
objects apart from aggregate. When the root instance of an
aggregate is terminated, all the objects of the aggregate are
disposed as well. Additionally, aggregate objects can
reference to other roots through their original roots or even
change root too.

 “Aggregates represent a very clear business domain
aspect that should definitely be discussed with domain
experts. It is more important to focus on the fact that an
aggregate is a unit of consistency from a business
perspective.” [1]

“It is difficult to guarantee the consistency of change to
objects in a model with complex associations. Invariants
need to be maintained that apply to closely related groups
of objects, not just discrete objects. Yet cautious locking

schemes cause multiple users to interfere pointlessly with
each other and make a system unusable.” [3]

6) Factories

In Domain Layer, Factories are members responsible for

creation and management of domain objects. When create
an object request is made, Factory class isolates the
information needed to create the demanded object and
returns only the object after creation. It is suggested to use
factories when creating entities and aggregates. Aggregate
root and aggregate objects can be created at once with
factory methods. Factories can also be used to reconstitute
the certain objects created before. Creation and
reconstitution of entities are different from value objects
due to having an identity.

“Entity Factories and Value Object Factories are different.
Values are usually immutable objects, and all the necessary
attributes need to be produced at the time of creation. When
the object is created, it has to be valid and final. It won’t
change. Entities are not immutable. They can be changed
later, by setting some of the attributes with the mention that
all invariants need to be respected. Another difference
comes from the fact that Entities need identity, while Value
Objects do not.” [2]

Such patterns of “Abstract Factory”, “Factory Method”
defined among creational patterns [8] in the book named “
Design Patterns by Gamma et all” offers effective methods
to use factories. [6]

7) Repositories

Domain model objects and object groups are no obliged
to deal with infrastructure in order to access other objects.
Forming a repository that all the references among objects
can be obtained will increase the clarity of the model
making it more systematic. Repository is a storage of all
persistent objects which can be accessed globally.
Therefore, the object storage and access responsibility of
domain model is delegated to repository. Repositories must
use the ubiquitous language of the domain. From the
Domain Driven point of view, using methods of same
language instead of using DAO (Database Access Object)
will be much more advantageous.

IV. CONTINIOUS REFACTORING

Refactoring is a discipline that is followed while making

small improvements on projects and occasionally these
minor changes may prevent some upcoming bottlenecks.
Refactoring the code whenever a new concept added to the

ap
do
an
m
m

Do
“C
de
in
m
m
cla
re

pr
so
cla
m
ub

La
En
W
m
th
ex

pplication will
omain. Determ
nd converting

maintain contin
may be practica

There are thr

omain Drive
Constraint”.
efined by busin
 Ubiquitous

methods (mostl
make them ex

asses will mak
factoring.

A second me

rocedural conc
o alternatively
asses will be

method is to u
biquitous langu

Last of all i

ayer, business
ntities and Val

When the comp
more detailed an

at from hap
xclusive busi

l ensure that t
mining the im

them to exp
nuous refactor
al for this proc

ree ways sug
en Design c
A domain o

ness rules. If t
Language

y methods tha
xplicit and pl
ke the system

ethod in refac
cepts conflicts
y implement
useful. The ea
use Services.
uage can be u

is the “Speci
s rules imply
lue Objects ar
plexity of the
nd cross outsi
ppening, an
iness rules

the code is up
mplicit concep

licit as much
ring. Analyzin
cess.

gested for co
concept. Fir

object may h
these constrain
concretely, w
at returning B
lacing them

m more flexible

ctoring is “Pr
s with object o
ting processe
asiest way of

The process
sed from servi

ification” met
ying behaviors
re the respons
e system gets
de of domain
object that
and contain

p-to-date with
ts of the dom

h as possible w
ng certain noti

ode refactoring
st of them

have a constr
nts are mentio
writing differ
oolean values
in some priv
e and suitable

ocess”. Usage
oriented appro
es to associa
applying proc

ses mentioned
ices.

thod. In Dom
s and applied
sibility of obje
higher, rules
layer. To prev
implements

n only cer

the
main
will
ions

g in
is

raint
oned
rent

s) to
vate

e for

e of
oach
ated
cess
d in

main
d to
ects.

get
vent

all
rtain

sp
c
to

b
su
c
a

“
w
e
n
p
a
a
w
N
h
in
d
c

p
b

pecifications t
can be applied
o some level t

V. MA

Large-scale
by several sub
ub-models ma

clarity, flexibil
all sub-models

“The world of
world. To mai
enterprise syst
necessary to a
parts of the sy
about which p
and what their
ways of keepin
None of this ha
happens only
nstitution of

domain model
cost-effective.”

Domain-Dri
preserving the
below for each

A. Bound

to the related
to every obje

to need a speci

AINTAINING

software proj
b-models, bec
ay improve s
lity etc. For th
 as a one comp

f large system
intain that le
tem is more

allow multiple
ystem, but we
arts of the sys
r relationship
ng crucial par
appens by itse

through con
specific proc

l for a large
” [3]

iven Design p
model integri

h pattern.

ded Context

 SWE57

object is defi
ct that contain
ification.

G MODEL INT

ect’s models
cause expressi
ome aspects

hese kind of pr
plete model m

ms developmen
evel of unifica
trouble than

e models to de
e need to mak
stem will be a
to each other

rts of the mod
lf or through g
nscious desig
esses. Total
system will n

proposes som
ity. Short expl

77 2011S

fined. This me
ns busines rule

TEGRITY

may be comp
ing the mode
of the model
rojects, integra

may be imposs

nt is not the i
ation in an e

it is worth.
evelop in diffe
ke careful cho
allowed to div
r will be. We
del tightly unif
good intension
gn decisions
unification of
not be feasibl

me methods a
lanations are g

5

ethod
es up

posed
el by

like
ating
ible.

ideal
entire

It is
ferent
oices
verge
need
ified.
ns. It

and
f the
le or

about
given

 SWE577 2011S

6

Bounded Context is the boundary determining the

applicability of a particular model. It provides project team
a clear and common domain definition eventually helping
them to develop system in a more convenient way. First,
contexts of model are decided, then tasks assigned to
related teams. The responsibility that will be given to a
bounded context and roles should be defined clearly.

B. Continuous Integration

Fragmentation is inevitable when some number of people

are working in a bounded context so for the continuum of
purity, a process of integration should be applied to all the
elements created in the context and written code should be
merged frequently (depending on the size of the software
team). Practicing Continuous Integration between different
bounded contexts is senseless so Continuous Integration
should be practiced among the people working on the same
bounded context.

C. Context Map

Developing only separate bounded contexts is not

sufficient alone because it lacks a global view of the project
so it is important to merge different bounded contexts and
manage interconnections. Context Map is a schematic that
expresses different bounded contexts and their relations.

D. Shared Kernel

There may be duplicate tasks between contexts therefore,

some common areas can be defined via domain model to
avoid repetitions and more than one team can work on this
shared kernel. If a team is using shared kernel, no
modification should be made without notifying other teams
working on same kernel.

E. Customer-Supplier

In case where the relation between two bounded contexts

is strong in one side and not in the other, using a shared
kernel may not be handy. For such cases, building a
customer-supplier hierarchy between bounded contexts
helps managing one sided relations.

F. Conformist

When customer needs the supplier but the supplier is not

interested in this relation, it may be useful to go for
adaptations to the supplier. This concept is called
Conformist Pattern. Before applying this pattern, it is

important to be sure if the benefits are worth for adaptations
and change.

G. Anticorruption Layer

Systems communicate with other systems. While creating

a model for a system, the communication protocols and
related concepts about accessing to other systems should be
well defined. However the external system is modeled,
internal model should use its own Ubiquitous Language and
methods during communication processes. For this purpose,
building a layer that act as a translator and an adapter
between systems, which speaks the same language with
internal model and has the ability to reach the external
system will provide coherence and integrity for model. This
layer is called Anticorruption Layer, which seems like a
part of the main model, not like an external component. It
communicates with external system in its own language,
acquires the knowledge from it, and serves it to the internal
system. In this instance, the easiest way to implement such
a pattern is the use of Services.

H. Separate Ways

In case a system contains various sub-systems that has

very weak relations between, in the modeling perspective
Separate Ways pattern may be used. The sub-systems that
does not share common parts with others are determined,
and their bounded context is defined. These separate
bounded contexts may be modeled and designed separately.
Likewise, different technologies and implementation
techniques may also be used in these contexts, this provides
flexibility and freedom for the developer team. Before
applying this pattern, it is good to be sure if this bounded
context has not any significantly common parts with other
contexts.

İ. Open-Host Service

In most case, interaction between systems are made by

creating a translation layer between. If more than one sub-
systems need the access to a sub-system and they do their
requests in different ways and methods, adding a translation
layer for all of these clients is not practical. Defining some
Open-Host Services in this sub-system to serve other client
sub-systems by developing a common protocol for all types
of demands. This protocol should be pure and coherent.

J. Distillation

The model of a large scaled software projects may still

 SWE577 2011S

7

look complex even after all abstractions, refinements and
refactoring. In this case Distillation may provide some more
simplicity. This method offers to define the main core
concepts of the model, to call it “Core Domain”, and to
introduce the rest of the context as “Generic Sub-Domain”.
Core Domain should be as small as possible, because
modeling the Core Domain carries the high priority. Using
the best developers in this process would be the right
choice. Generic Sub-Domains may be implemented “In-
House”, may be provided by outsourcing or reuse methods.

Detailed information about model integrity patterns is
available on Eric Evans ”Domain-Driven Design Tackling
Complexity in the Heart of Software” [3]

V. CONCLUSION

In these days, the importance of understanding the

domain is frequently mentioned. The main objective of
software projects is to offer solutions for domain problems,
so the source of the failure in most cases lies within the core
domain.

“The long-term trend is toward applying software to more
and more complex problems deeper and deeper into the
heart of these businesses. It seems to me this trend was
interrupted for a few years, as the web burst upon us.
Attention was diverted away from rich logic and deep
solutions, because there was so much value in just getting
data onto the web, along with very simple behavior. There
was a lot of that to do, and just doing simple things on the
web was difficult for a while, so that absorbed all the
development effort.” [4]

All stakeholders who works in the process of
understanding the domain and modeling, like software
engineers, requirement engineers, analysts, domain experts
may make mistakes, and this is the part of the natural
process because it is always difficult to define a problem of
the world phenomena in the machine phenomena [7].
Domain Driven Design offers methods in order to get the
best domain knowledge, and decrease the likelihood of
misunderstandings that may occur during the modeling. It
emphasizes bravely the importance of the facts like, all
teams including technical or non-technical stakeholders
speak the same Ubiquitous Language and participate in
modeling and analyze processes etc. This concept is the
main factor to provide the integrity of the model. The
building blocks that DDD offers aims to decrease the
complexity of the domain, to refine it, to ensure the purity
and clarity. The patterns of DDD helps maintaining the
model coherent and pure. As in all pattern approaches, it is
not practical to apply DDD in all cases, it is not needed to
implement the whole concept, to take the advantages of it
where it will produce benefits and to think free for the rest
will be helpful.

Finally, DDD became one of the popular concepts in the

enterprise software world by providing advantages in
domain understanding and modeling. In general, the more
DDD decreases the percentages of failure in software
projects, the more domain-oriented methods will gain
importance.

VI. REFERENCES

[1] Adzic Gojko; “Improving Performance and Scalability with DDD”

posted on Jun,23,2009
 Available from Internet
 <URL:http://gojko.net/2009/06/23/improving-performance-and-

scalability-with-ddd>

[2] Avram Abel –Marinescu Floyd; “Domain Driven Design Quickly”
Available on InfoQ.com

[3] Evans Eric;”Domain-Driven Design Tackling Complexity in the
Heart of Software” Addison-Wesley 2004
ISBN-13: 978-0-321-12521-7
ISBN-10: 0-321-12521-5

[4] Evans Eric; “Interview With Eric Evans; Why DDD Matters Today ”
posted on Dec,20,2006
 Available from Internet

 <URL: http://www.infoq.com/articles/eric-evans-ddd-matters-today>

[5] Evans Eric; DDD: “Putting the Model to Work”; presented on

Nov,06,2007
 <URL: http://infoq.com/presentations/model-to-work-evans>

[6] Gamma Erich, Helm Richard, Johnson Ralph, Vlissides John M.;

“Design Patterns: Elements of Reusable Object-Oriented Software”
Addison-Wesley 2000

 ISBN: 0-201-63361-2

[7] Lamsweerde Axel Van; “Requirements Engineering”
 Wiley Publishing 2009
 ISBN: 978-0-470-01270-3

[8] McCarthy Tim; “.NET Domain-Driven Design with C#, Problem –

Design – Solution” Wiley Publishing, Inc 2008
 ISBN: 978-0-470-14756-6

[9] Nilsson Jimmy; “Applying Domain-Driven Design and Patterns –

With Examples in C# and .NET” Pearson Education 2006
 ISBN: 0-321-26820-2

[10] Wikipedia - “Creational Patterns”
 Available from Internet
 <URL:http://en.wikipedia.org/wiki/Creational_pattern>

[11] Wikipedia – “Domain Driven Design”

 Available from Internet
<URL: http://www.en.wikipedia.org/wiki/Domain-driven_design >

